The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells.
نویسندگان
چکیده
The efficiency of polymer solar cells critically depends on the intimacy of mixing of the donor and acceptor semiconductors used in these devices to create charges and on the presence of unhindered percolation pathways in the individual components to transport holes and electrons. The visualization of these bulk heterojunction morphologies in three dimensions has been challenging and has hampered progress in this area. Here, we spatially resolve the morphology of 2%-efficient hybrid solar cells consisting of poly(3-hexylthiophene) as the donor and ZnO as the acceptor in the nanometre range by electron tomography. The morphology is statistically analysed for spherical contact distance and percolation pathways. Together with solving the three-dimensional exciton-diffusion equation, a consistent and quantitative correlation between solar-cell performance, photophysical data and the three-dimensional morphology has been obtained for devices with different layer thicknesses that enables differentiating between generation and transport as limiting factors to performance.
منابع مشابه
Effect of Seed Layer on the Morphology of Zinc Oxide Nanorods as an Electron Transport Layer in Polymer Solar Cells
Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...
متن کاملEffect of TiO2 Nanofiber Density on Organic-Inorganic Based Hybrid Solar Cells (RESEARCH NOTE)
Abstract In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels ...
متن کاملبهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی
Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...
متن کاملStudying the Effect of Montmorillonite Nanoclay on Mechanical Properties and the Amount of Nanoclay on Epoxy Siloxane Hybrid Coatings
Create three-dimensional network of siloxane polymer in the epoxy resin is an appropriate mechanical properties .Dispersion of nanoclay in these coating was prepared by ultrasonication method. Mechanical properties of nanocomposit coatings such as abrasion, hardness and adhesion was increased by addition of nanoclay montmorillonite. Different percentages of nanoclay in coating showed that even ...
متن کاملOrganic and Hybrid Solar Cells Based on Well-Defined Organic Semiconductors and Morphologies
Abstract. Organic and hybrid bulk-heterojunction solar cells are investigated. We describe the synthesis and solar cell characteristics of well-defined functional thiophene dendrimers. Three-dimensional morphologies of the polymer – metal oxide bulk heterojunctions are analysed with electron tomography and are analysed and simulated with stochastic models, to establish the effect of processing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2009